
Package: forestRK (via r-universe)
September 6, 2024

Version 0.0-5

Encoding UTF-8

Title Implements the Forest-R.K. Algorithm for Classification Problems

Description Provides functions that calculates common types of
splitting criteria used in random forests for classification
problems, as well as functions that make predictions based on a
single tree or a Forest-R.K. model; the package also provides
functions to generate importance plot for a Forest-R.K. model,
as well as the 2D multidimensional-scaling plot of data points
that are colour coded by their predicted class types by the
Forest-R.K. model. This package is based on: Bernard, S.,
Heutte, L., Adam, S., (2008, ISBN:978-3-540-85983-3)
``Forest-R.K.: A New Random Forest Induction Method'', Fourth
International Conference on Intelligent Computing, September
2008, Shanghai, China, pp.430-437.

Author Hyunjin Cho [aut, cre], Rebecca Su [ctb]

Maintainer Hyunjin Cho <h56cho@uwaterloo.ca>

Depends R (>= 3.6.0)

Imports igraph, ggplot2, rapportools, partykit, stats, graphics,
pkgKitten, knitr, mlbench

License GPL (>= 3) | file LICENSE

Note The package is also based on the discussion
https://stats.stackexchange.com/questions/168964/building-a-regression-tree-with-r-from-
scratch/168967#168967

RoxygenNote 6.1.1

Suggests R.rsp

VignetteBuilder R.rsp

Repository https://h56cho.r-universe.dev

RemoteUrl https://github.com/h56cho/forestrk

RemoteRef HEAD

RemoteSha 2c1ea77b071121fe3934ad89cd3485e97bfe3b4c

1

2 bstrap

Contents
bstrap . 2
construct.treeRK . 3
criteria.after.split.calculator . 6
criteria.calculator . 7
cutoff.node.and.covariate.index.finder . 9
draw.treeRK . 10
ends.index.finder . 12
forestRK . 13
get.tree.forestRK . 15
importance.forestRK . 16
importance.plot.forestRK . 17
mds.plot.forestRK . 19
pred.forestRK . 20
pred.treeRK . 23
var.used.forestRK . 25
x.organizer . 26
y.organizer . 27

Index 30

bstrap Performs bootstrap sampling of the (training) dataset

Description

Performs bootstrap sampling of our (training) dataset; this function is used inside of the forestRK
function.

Usage

bstrap(dat = data.frame(), nbags, samp.size)

Arguments

dat a numericized data frame that stores both the covariates of the observations and
their numericized class types y; dat should contain no NA or NaN’s.

nbags the number of bags or the number of bootstrap samples that we want to generate.

samp.size the number of samples that each bag (individual bootstrap sample) should con-
tain.

Value

A list containing a data frames of bootstrap samples generated from dat.

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

construct.treeRK 3

See Also

forestRK

Examples

example: iris dataset
load the forestRK package
library(forestRK)

covariates of training data set
x.train <- x.organizer(iris[,1:4], encoding = "num")[c(1:25,51:75,101:125),]
y.train <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.new
combine the covariates x with class types y
b <- data.frame(cbind(x.train, y.train))

bstrp function example
bootstrap.sample <- bstrap(dat = b, nbags = 20, samp.size = 30)

construct.treeRK Constructs a classification tree on the (training) dataset, by imple-
menting the RK (Random ’K’) algorithm

Description

Constructs a classification tree based on the dataset of interest by implementing the RK (Random
’K’) algorithm.

The package rapportools is loaded internally when this function is called; this is to use the method
is.boolean to check one of the stopping criteria in the beginning of the function. The func-
tions specifically from the forestRK package that are being used inside construct.treeRK are
criteria.calculator and cutoff.node.and.covariate.index.finder.

The construct.treeRK output is one of the arguments that is used to call the pred.treeRK func-
tion.

DESCRIPTIONS OF THE RETURNED VALUES:

The hirarchical flag of a rktree (construct.treeRK()$flag) is constructed in the following way:

(1) the first entry of the flag, "r" denotes for "root"; (2) the subsequent strings of the flag is con-
structed in the way that last "x" denotes for the left child node of the node represented by the series
of characters that are before the last "x", and the last "y" denotes for the right child node of the node
represented by the series of characters that are before the last "y".

For example, the flag "rxyx" is the left child node of the node represented by "rxy".

x.node.list and y.node.list are the lists of children nodes (for x and y, respectively) of the
rktree, listed in the order consistent to the order of the nodes represented in the rktree’s hirarchi-
cal flag.

covariate.split is a matrix that lists the numericized covariate names that were used for the splits
to construct the rktree. The first entry of covariate.split is NA, which stands for the condition at
the root. The number immediately underneath NA is the numericized covariate name that was used

4 construct.treeRK

for the first split in the rktree, and the number below that is the numericized covariate name that
was used for the second split, etc. If the numericized covariate name listed under covariate.split
is the number "n", this corresponds to the "n"-th covariate or the name of the "n"-th column of the
data frame x.train.

value.at.split is a vector that lists the actual values of the covariates at which the split had oc-
cured while constructing the rktree. The first entry of value.at.split is NA, which denotes for the
root prior to any splits. To give an example of how to interpret the value.at.split, if the second
entry appear in the covariate.split is 4, and the second entry appear under value.at.split is
0.5, this indicates that the first split of the rktree had occured on the covariate corresponds to the 4th
column of the data frame x.train, and the exact criteria for that first split was (4th covariate value)
<= 0.5 vs. (4th covariate value) > 0.5.

amount.decrease.criteria is a matrix that lists the amount of decrease in splitting criteria (En-
tropy or Gini Index) after each split had occurred. The first entry of amount.decrease.criteria
is NA, which denotes for the condition at the root (no split). To give an example, if the second entry
appear in the amount.decrease.criteria is 0.91, and if entropy was set to TRUE, this means that
after the first split, the Entropy of the original node had decreased by 0.91.

num.obs is a matrix that stores the number of observations contained within a parent node prior
to the split; the matrix starts with the entry "NA", in order to reflect the condition at "root". The
2nd entry of num.obs would inform us on the number of observations contained within the parent
node on which the 1st split had took place while the rktree was built; the 3rd entry of the num.obs
would inform us on the number of observations contained within the parent node on which the 2nd
split had took place, and so on.

Usage

construct.treeRK(x.train = data.frame(), y.new.train = c(),
min.num.obs.end.node.tree = 5, entropy = TRUE)

Arguments

x.train a numericized data frame of covariates of the data on which we want to build
our rktree models (typically the training data); this data frame can be obtained
by applying the x.organizer function. x.train should contain no NA or NaN’s.

y.new.train a numericized class types of the observations from the dataset on which we want
to build our rktree models (typically the training data). y.new.train should
contain no NA or NaN’s.

min.num.obs.end.node.tree

the minimum number of observations that we want each end node of our rktree
to contain. Default is set to ’5’.

entropy TRUE if Entropy is used as the splitting criteria; FALSE if Gini Index is used as
the splitting criteria. Default is set to TRUE.

Value

A list containing the following items:

covariate.names

a vector of the names of all covariates that we consider in our model.

construct.treeRK 5

l length of the hierarchical flag.

x.node.list a list containing a series of children nodes produced from the numericized data
frame x.train as the rktree model was building up.

y.new.node.list

a list containing a series of children nodes produced from the numericized vector
of class type y.new.train as the rktree model was building up.

flag hierchical flag that characterizes each split in the rktree.

covariate.split

a matrix that lists numericized covariates used for each split as the rktree was
built.

value.at.split a vector that lists the values at which each node of the rktree was split.

amt.decrease.criteria

a matrix that lists the amount of decrease in splitting criteria after each split as
the rktree was built.

num.obs a matrix that stores the number of observations contained in each parent node
right before each split.

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

See Also

pred.treeRK

Examples

example: iris dataset
load the forestRK package
library(forestRK)

numericize the data
x.train <- x.organizer(iris[,1:4], encoding = "num")[c(1:25,51:75,101:125),]
y.train <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.new

Construct a tree
min.num.obs.end.node.tree is set to 5 by default;
entropy is set to TRUE by default
tree.entropy <- construct.treeRK(x.train, y.train)
tree.gini <- construct.treeRK(x.train, y.train,

min.num.obs.end.node.tree = 6, entropy = FALSE)
tree.entropy$covariate.names
tree.gini$flag # ...etc...

6 criteria.after.split.calculator

criteria.after.split.calculator

Calculates Entropy or Gini Index of a node after a given split

Description

Calculates Entropy or Gini Index of a particular node after a particular split; this function is called
within construct.treeRK function.

The argument split.record is a kidids_split object from the package partykit; the method
kidids_split splits the data according to the criteria specified by an user ahead of time, and
returns a vector storing the index of the split group (group "1" or "2") that each observation from
the original data in question belongs to after the split has occurred.

For more information about the function, please see the partykit documentation.

Usage

criteria.after.split.calculator(x.node = data.frame(), y.new.node = c(),
split.record = kidids_split(),
entropy = TRUE)

Arguments

x.node numericized data frame of covariates (obtained via x.organizer()) from a par-
ticular node that is to be split; x.node should contain no NA or NaN’s.

y.new.node numericized class type of each observation from a particular node that is to be
split; y.new.node should contain no NA orNaN’s.

split.record output of the kidids_split function from the partykit package that describes
a particular split.

entropy TRUE if Entropy is used as the splitting criteria; FALSE if Gini Index is used
instead. Default is set to TRUE.

Value

The value of Entropy or Gini Index of a particular node after a particular split.

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

See Also

criteria.calculator

criteria.calculator 7

Examples

example: iris dataset
library(forestRK) # load the package forestRK
library(partykit)

covariates of training data set
x.train <- x.organizer(iris[,1:4], encoding = "num")[c(1:25,51:75,101:125),]
numericized class types of observations of training dataset
y.train <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.new
criteria.after.split.calculator() example in the implementation
of the forestRK algorithm

ent.status <- TRUE

number.of.columns.of.x.node
= total number of covariates that we consider
number.of.columns.of.x.node <- dim(x.train)[2]
m.try = the randomly chosen number of covariates that we consider
at the time of split
m.try <- sample(1:(number.of.columns.of.x.node),1)
sample m.try number of covariates from the list of all covariates
K <- sample(1:(number.of.columns.of.x.node), m.try)

split the data
(the choice of the type of split used here is only arbitrary)
for more information about kidids_split,
please refer to the documentation for the package 'partykit'
sp <- partysplit(varid=K[1], breaks = x.train[1,K[1]], index = NULL,

right = TRUE, prob = NULL, info = NULL)
split.record <- kidids_split(sp, data=x.train)

implement critera.after.split function based on kidids_split object
criteria.after.split <- criteria.after.split.calculator(x.train,

y.train, split.record, ent.status)
criteria.after.split

criteria.calculator Calculates Entropy or Gini Index of a particular node before (or with-
out) a split

Description

Calculates the Entropy or Gini Index of a particular node before (or without) a split. This function
is used inside the criteria.after.split.calculator method.

Usage

criteria.calculator(x.node = data.frame(), y.new.node = c(),
entropy = TRUE)

8 criteria.calculator

Arguments

x.node numericized data frame of covariates of a particular node (can be obtained by
applying x.organizer) before or without a split; x.node should contain no NA
or NaN’s.

y.new.node numericized vector of class type (y) of a particular node (can be obtained by
applying y.organizer) before or without split; y.new.node should contain no
NA or NaN’s.

entropy TRUE if Entropy is used as the splitting criteria; FALSE if Gini Index is used as
the splitting criteria. Default is set to TRUE.

Value

A list containing the following items:

criteria the value of the Entropy or the Gini Index of a particular node.

ent.status logical value (TRUE or FALSE) of the parameter entropy.

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

See Also

criteria.after.split.calculator

Examples

example: iris dataset
library(forestRK) # load the package forestRK

covariates of training data set
x.train <- x.organizer(iris[,1:4], encoding = "num")[c(1:25,51:75,101:125),]
numericized class types of observations of training dataset
y.train <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.new

criteria.calculator() example
calculate the Entropy of the original training dataset
criteria.calculator(x.node = x.train, y.new.node = y.train)
calculate the Gini Index of the original training dataset
criteria.calculator(x.node = x.train, y.new.node = y.train, entropy = FALSE)

cutoff.node.and.covariate.index.finder 9

cutoff.node.and.covariate.index.finder

Identifies optimal cutoff point of an impure node for splitting after ap-
plying the rk (Random K) algorithm.

Description

Identifies optimal cutoff point of an impure dataset for splitting after applying the rk (Random K)
algoritm, in terms of Entropy or Gini Index.

To give an example, if the function gives cutoff.value of 2.5, covariate.ind of 4, and cutoff.node
of 23, this would inform the user that if a split is to be performed on the particular node that the user
is considering, the split should occur on the 4th covariate (the actual name of this covariate would
be the name of the 4th column from the original dataset), at the value of 2.5 (left child node in this
case would be the group of observations that have their 4th covariate value less than or equal to 2.5,
and for the right child node would be the group of observations that have their 4th covariate value
greater than 2.5), and that this splitting point corresponds to the 23rd observation point of the node.

This function internally loads the packages partykit and rapportools; the package partykit is
internally loaded to generate the object split.record.optimal, and the package rapportools is
loaded to allow the validation of one of the stopping criteria that uses is.boolean method.

This function is ran internally in the construct.treeRK function.

Usage

cutoff.node.and.covariate.index.finder(x.node = data.frame(),
y.new.node = c(), entropy = TRUE)

Arguments

x.node a numericized data frame of covariates of the observations from a particular
node prior to the split (can be obtained after applying x.organizer()); x.node
should contain no NA or NaN’s.

y.new.node a vector storing numericized class type of the observations from a particular
node before the split (can be obtained after applying y.organizer()); y.new.node
should contain no NA or NaN’s.

entropy TRUE if Entropy is used as the splitting criteria; FALSE if Gini Index is used as
the splitting criteria. Default is set to TRUE.

Value

A list containing the following items:

cutoff.value the value at which the optimal split should take place.
cutoff.node the index of the observation (observation number) at which optimal split should

occur.
covariate.ind numeric index of the covariate at which the optimal split should occur.
split.record.optimal

the kidid_split output of the optimal split.

10 draw.treeRK

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

See Also

construct.treeRK

Examples

example: iris dataset
load the forestRK package
library(forestRK)

numericize the data
x.train <- x.organizer(iris[,1:4], encoding = "num")[c(1:25,51:75,101:125),]
y.train <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.new

implementation of cutoff.node.and.covariate.index.finder()
res <- cutoff.node.and.covariate.index.finder(x.train, y.train,

entropy=FALSE)
res$cutoff.value
res$cutoff.node
res$covariate.ind
res$split.record.optimal

draw.treeRK Creates a igraph plot of a rktree

Description

Creates a plot of a rktree that was built from the (training) dataset.

The package igraph is loaded internally when this function is called, to aid in generating the plot
of a rktree.

DESCRIPTIONS OF THE rktree PLOT:

The resulting plot is a classical decision tree.

The rectangular nodes (or vertices) that contain "=<" symbol are used to describe the splitting
criteria applied to that very node while constructing the rktree; for example, in the rktree plot
generated by the code shown in the "examples" section below, the node with the label "Petal.Width
=< 1.6" indicates that this node was split into a chunk that contains observations with Petal.Width
<= 1.6 and a chunk that contains observations with Petal.Width greater than 1.6, in order to construct
the rktree.

Any other rectangular nodes (or vertices) that do not contain the "=<" symbol indicate that we have
reached an end node, and the text displayed in such node is the actual name of the class type that
the rktree model assigns to the observations belonging to that node; for example, in the rktree plot
generated by the code shown in the "examples" section below, the vertex with the label "setosa"
indicates that the rktree assigns the class type "setosa" to all observations that belong to that
particular node.

draw.treeRK 11

Usage

draw.treeRK(tr = construct.treeRK(), y.factor.levels,
font = "Times", node.colour = "white", text.colour = "dark blue",
text.size = 0.67, tree.vertex.size = 75, tree.title = "Diagram of a Tree",
title.colour = "dark blue")

Arguments

tr a construct.treeRK() object (a tree).
y.factor.levels

a y.organizer()$y.factor.levels output.

font font type used in the rktree plot; default is "Times".

node.colour colour of the node used in the rktree plot; default is "White".

text.colour colour of the text used in the rktree plot; default is "Dark Blue".

text.size size of the text in the rktree plot; default is 0.67.
tree.vertex.size

size of the rktree plot vertices; default is 75.

tree.title title of the rktree plot; default title is "Diagram of a Tree".

title.colour colour for the title of the rktree plot; default title colour is "Dark Blue".

Value

An igraph plot of a rktree.

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

See Also

mds.plot.forestRK importance.plot.forestRK

Examples

example: iris dataset
load the forestRK package
library(forestRK)

Numericize the data
x.train <- x.organizer(iris[,1:4], encoding = "num")[c(1:25,51:75,101:125),]
y.train <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.new
y.factor.levels <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.factor.levels

Construct a tree
min.num.obs.end.node.tree is set to 5 by default;
entropy is set to TRUE by default
tree.entropy <- construct.treeRK(x.train, y.train)

12 ends.index.finder

Plot the tree
draw.treeRK(tree.entropy, y.factor.levels, font="Times",

node.colour = "black", text.colour = "white", text.size = 0.7,
tree.vertex.size = 100, tree.title = "Decision Tree",
title.colour = "dark green")

ends.index.finder Identifies numerical indices of the end nodes of a rktree from the
matrix of hierarchical flags.

Description

Identifies numerical indices of the end nodes of a rktree by closely examining the structure of the
rktree flag (obtained via construct.treeRK()$flag); the precise algorithm used is the follow-
ing:

if m-th string in the list of rktree flag is a substring of one or more of (m + 1),...,n-th strings in the
list of flag, then the node represented by the m-th string of the flag is not an end node; otherwise,
the node represented by the m-th string of the flag is the end node.

Usage

ends.index.finder(tr.flag = matrix())

Arguments

tr.flag a construct.treeRK()$flag object or a similar flag matrix.

Value

A vector that lists the indices of the end nodes of a given rktree (indices that are consistent to the
indices in x.node.list, y.new.node.list, and flag that are returned by the construct.treeRK
function).

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

See Also

construct.treeRK

forestRK 13

Examples

example: iris dataset
load the forestRK package
library(forestRK)

covariates of training data set
x.train <- x.organizer(iris[,1:4], encoding = "num")[c(1:25,51:75,101:125),]
y.train <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.new

Construct a tree
min.num.obs.end.node.tree is set to 5 by default;
entropy is set to TRUE by default
tree.entropy <- construct.treeRK(x.train, y.train)

Find indices of end nodes of tree.entropy
end.node.index <- ends.index.finder(tree.entropy$flag)

forestRK Builds up a random forest RK model based on the given (training)
dataset

Description

Builds up a random forest RK model onto the given (training) dataset.

The functions bstrap and construct.treeRK are used inside this function. Once the call for
bstrap generates bootstrap samples of the training dataset, then the function construct.treeRK
is called in order to build a tree on each of those bootstrap dataset, to form a bigger forest.

Calling of this function internally loads the package rapportools; this is to allow the use of
is.boolean method to check one of the stopping criteria.

Usage

forestRK(X = data.frame(), Y.new = c(),
min.num.obs.end.node.tree = 5, nbags, samp.size, entropy = TRUE)

Arguments

X a numericized data frame storing covariates of each observation contained in the
given (training) dataset (obtained via x.organizer()); X should contain no NA
or NaN’s.

Y.new a vector storing the numericized class types of each observation contained in the
given (training) dataset X; Y.new should contain no NA or NaN’s.

min.num.obs.end.node.tree

the minimum number of observations that we want each end node of our rktree
to contain. Default is set to 5.

nbags number of bootstrap samples that we want to generate to generate a forest.

14 forestRK

samp.size number of observations that we want each of our bootstrap samples to contain.

entropy TRUE if we use Entropy as the splitting criteria; FALSE if we use the Gini Index
for the splitting criteria. Default is set to TRUE.

Value

A list containing the following items:

X The original (training) dataset that was used to construct the random forest RK
model.

forest.rk.tree.list

A list of trees (construct.treeRK objects) contained in the forestRK model.

bootsamp.list A list containing data frames of bootstrap samples that were generated from the
given (training) dataset X.

ent.status The value of the parameter entropy.

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

See Also

bstrap construct.treeRK

Examples

example: iris dataset
load the forestRK package
library(forestRK)

covariates of training data set
x.train <- x.organizer(iris[,1:4], encoding = "num")[c(1:25,51:75,101:125),]
y.train <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.new

Implement forestRK function
min.num.obs.end.node.tree is set to 5 by default;
entropy is set to TRUE by default
normally nbags and samp.size has to be much larger than 30 and 50
forestRK.1 <- forestRK(x.train, y.train, nbags = 30, samp.size = 50)

extract the first tree in the forestRK.1 model
forestRK.1$forest.rk.tree.list[[1]]

get.tree.forestRK 15

get.tree.forestRK Extracts the structure of one or more trees in a forestRK object

Description

Extracts structure of one or more trees from a forestRK object.

Each tree in the list are named by the exact indices of the tree; for example, if the code obj <-
get.tree.forestRK(forestRK.1, tree.index=c(4,5,6)) was used to extract the structure of
the 4th, 5th, and 6th trees in the forest, the user can retrieve the information pertains explicitly to
the 4th tree in the forest by doing obj["4"]].

Usage

get.tree.forestRK(forestRK.object = forestRK(), tree.index=c())

Arguments

forestRK.object

a forestRK object.

tree.index a vector of indices of the trees that we want to extract from the forestRK object.

Value

A list containing forestRK trees that have their indices specified in the function argument tree.index.

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

See Also

forestRK

Examples

example: iris dataset
load the forestRK package
library(forestRK)

x.train <- x.organizer(iris[,1:4], encoding = "num")[c(1:25,51:75,101:125),]
y.train <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.new

random forest
min.num.obs.end.node.tree is set to 5 by default;
entropy is set to TRUE by default
normally nbags and samp.size have to be much larger than 30 and 50
forestRK.1 <- forestRK(x.train, y.train, nbags = 30, samp.size = 50)

16 importance.forestRK

get tree
tree.index.ex <- c(1,3,8)
get.tree <- get.tree.forestRK(forestRK.1, tree.index = tree.index.ex)
get.tree[["8"]] # display the 8th tree of the random forest

importance.forestRK Calculates Gini Importance or Mean Decrease Impurity (same algo-
rithm is used in ’scikit-learn’) of each covariate that we consider in
the forestRK model

Description

Calculates Gini Importance of each covariate considered in the forestRK model, and list them in the
order of most important to the least important.

The Gini Importance or Mean Decrease in Impurity algorithm is also used in ’scikit-learn’. Gini
Importance is defined as the total decrease in node impurity averaged over all trees of the ensemble,
where the decrease in node impurity is obtained after weighting by the probability for an observation
to reach that node (which is approximated by the proportion of samples reaching that node).

Usage

importance.forestRK(forestRK.object = forestRK())

Arguments

forestRK.object

a forestRK object.

Value

A list containing the following items:

importance.covariate.names

a vector of names of the covariates of our dataset ordered from the most impor-
tant to the least important.

average.decrease.in.criteria.vec

a vector storing the average decrease in the weighted splitting criteria by each
covariate that was calculated across all trees in the forestRK object; the num-
bers are ordered from the highest average decrease in criteria (importance) to
the lowest, so the i-th importance number from this vector pertains to the i-th
covariate listed in the vector output importance.covariate.names.

ent.status status of the parameter entropy; TRUE if Entropy is used for splitting critera,
FALSE if Gini Index is used instead.

x.original a numericized data frame storing covariates of each observation from the given
(training) dataset that was used to construct the forestRK object in the begin-
ning of the forestRK function call.

importance.plot.forestRK 17

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

See Also

forestRK

Examples

example: iris dataset
load the forestRK package
library(forestRK)

numericize the data
x.train <- x.organizer(iris[,1:4], encoding = "num")[c(1:25,51:75,101:125),]
y.train <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.new

random forest
min.num.obs.end.node.tree is set to 5 by default;
entropy is set to TRUE by default
typically the nbags and samp.size has to be much larger than 30 and 50
forestRK.1 <- forestRK(x.train, y.train, nbags=30, samp.size=50)
execute importance.forestRK function
imp <- importance.forestRK(forestRK.1)

importance.plot.forestRK

Generates importance ggplot of the covariates considered in the
forestRK model

Description

Generates importance ggplot of the covariates considered in the forestRK model.

When the number of covariates under consideration is huge, it can be pretty difficult to read the co-
variate name from this plot. In this case, user can identify the name of the covariate that he or she is
interested in by extracting importance.covariate.names from the importance.forestRK.object
that was used in the function call. importance.covariate.names lists the original names of the
covariates after ordering them from the most important to the least important. So for example, the
exact name of the covariate that has the second highest importance would be the second element of
the vector importance.covariate.names, and so on.

Usage

importance.plot.forestRK(importance.forestRK.object = importance.forestRK(),
colour.used = "dark green", fill.colour = "dark green",
label.size = 10)

18 importance.plot.forestRK

Arguments

importance.forestRK.object

an importance.forestRK object.

colour.used colour used for the border of the importance plot; default is "dark green".

fill.colour colour used to fill the bars of the importance plot; default is "dark green" (yes, I
like dark green).

label.size size of the labels; default is set to 10.

Value

An importance plot of the covariates considered in the forestRK model, ordered from the most
important covariate to the least important covariate.

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

See Also

forestRK

Examples

example: iris dataset
load the forestRK package
library(forestRK)

numericize the data
x.train <- x.organizer(iris[,1:4], encoding = "num")[c(1:25,51:75,101:125),]
y.train <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.new

random forest
min.num.obs.end.node.tree is set to 5 by default;
entropy is set to TRUE by default
typically the nbags and samp.size has to be much larger than 30 and 50
forestRK.1 <- forestRK(x.train, y.train, nbags = 30, samp.size = 50)
execute forestRK.importance function
imp <- importance.forestRK(forestRK.1)

generate importance plot
importance.plot.forestRK(imp)

mds.plot.forestRK 19

mds.plot.forestRK Makes 2D MDS (multidimensional scaling) ggplot of the test obser-
vations based on the predictions from a forestRK model.

Description

Plots 2D MDS (Multi-Dimensional Scaling) ggplot of the test observations based on the provided
forestRK model, and each test observation is colour coded by their predicted class types.

The plot also has legends that tells user which colour pertains to which predicted class type.

The existing R functions dist and cmdscale were used in this function to compute the Multi-
Dimensional Scales of the test data.

Usage

mds.plot.forestRK(pred.forestRK.object = pred.forestRK(),
plot.title ="MDS Plot of Test Data Colour Coded by Forest RK Model Predictions",
xlab ="First Coordinate", ylab = "Second Coordinate",
colour.lab = "Predictions By The Random Forest RK Model")

Arguments

pred.forestRK.object

a pred.forestRK() object.

plot.title an user specified title for the mds plot; the default is "MDS Plot of Test Data
Colour Coded by Forest RK Model Predictions".

xlab label for the x-axis of the plot; the default is "First Coordinate".

ylab label for the y-axis of the plot; the default is "Second Coordinate".

colour.lab label title for the legend that specifies categories for each colour; the default is
"Predictions By The Random Forest RK Model".

Value

A multidimensional scaling ggplot (2D) of the test observations, colour coded by their predicted
class types.

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

See Also

forestRK

20 pred.forestRK

Examples

example: iris dataset
load the forestRK package
library(forestRK)

x.train <- x.organizer(iris[,1:4], encoding = "num")[c(1:25,51:75,101:125),]
x.test <- x.organizer(iris[,1:4], encoding = "num")[c(26:50,76:100,126:150),]
y.train <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.new
y.factor.levels <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.factor.levels

min.num.obs.end.node.tree is set to 5 by default;
entropy is set to TRUE by default
typically the nbags and samp.size has to be much larger than 30 and 50
pred.forest.rk <- pred.forestRK(x.test = x.test,

x.training = x.train, y.training = y.train,
nbags = 30, samp.size = 50,
y.factor.levels = y.factor.levels)

generate a classical mds plot of test observations
and colour code them by the predicted class
mds.plot.forestRK(pred.forest.rk)

pred.forestRK Make predictions on the test data based on the forestRK model con-
structed from the training data

Description

Makes predictions on the test dataset based on the forestRK model constructed from the training
dataset.

Please be aware that, the test data points in test.prediction.df.list , pred.for.obs.forest.rk,
and num.pred.for.obs.forest.rk are re-ordered by the increasing original index number (the
original rownames) of those test observations. So if you shuffled the data before seperating them
into a training and a test set, the order of the data points in which they are presented under the at-
tribute test.prediction.df.list, pred.for.obs.forest.rk, and num.pred.for.obs.forest.rk
may not be same as the shuffled order of your original test set.

Calling of this function internally loads the package rapportools; this is to allow the use of
is.boolean method to check one of the stopping criteria in the beginning.

The basic mechanism behind pred.forestRK function is the following:

When the function is called, it calls forestRK function after passing the user-specified training
data as an argument, in order to first generate the forestRK object. After that, the function uses
pred.treeRK function to make predictions on the test observations based on each individual tree
in the forestRK object. Once the individual prediction from each tree are obtained for all of the
test observations, the function stores those individual predictions under a big dataframe. Once that
data frame is complete, then the function collapses the results by the rule of the majority votes. For
example, for the m-th observation from the test set, if the most frequently predicted class type for
that m-th test observation by all of the rkTrees in the forest is class type ’A’, then by the rule of the

pred.forestRK 21

majority votes, the pred.forestRK function will assign class ’A’ as the predicted class type for that
m-th test observation based on the forestRK model.

Usage

pred.forestRK(x.test = data.frame(), x.training = data.frame(),
y.training = c(), y.factor.levels,
min.num.obs.end.node.tree = 5,
nbags, samp.size, entropy = TRUE)

Arguments

x.test a numericized data frame of covariates of the data points on which we want
to make our predictions (typically the test observations); x.test can be ob-
tained by applying the x.organizer() function. x.test should contain no NA
or NaN’s.

x.training a numericized data frame of covariates of data points from which we build our
forestRK model (typically the training observations); x.training can be ob-
tained by applying the x.organizer() function. x.trainingshould contain no
NA or NaN’s.

y.training a vector that stores numericized class types of the training data points; y.training
should contain no NA or NaN’s.

min.num.obs.end.node.tree

the minimum number of observations that we want each end node of our rktree
to contain. Default is set to 5.

nbags the number of bootstrap samples that we want to generate to form a forest-RK.

samp.size the number of data points that we want each of our bootstrap sample to contain.

y.factor.levels

a vector of original names of all class types that the user considers in his or her
study (can be obtained via y.organizer()$y.factor.levels)

entropy TRUE if we use Entropy as the splitting criteria; FALSE if we use the Gini Index
for the splitting criteria. Default is set to TRUE.

Value

A list containing the following items:

x.test the original test dataset that we used to make predictions.

df.of.predictions.for.all.observations

a data frame storing predicted class types for all test observations from each tree
in the forest; each row of this data frame pertains to individual test observation,
and each column pertain to a specific tree from the forestRK model. This data
frame stores predicted (numericized) class type of each test observation from
each tree in the forestRK model.

forest.rk a forestRK object that was generated in the beginning of the function call.

22 pred.forestRK

test.prediction.df.list

a list of data frames storing the prediction.df’s (the data frame that can be ob-
tained via pred.treeRK()$prediction.df) of the test observations that were
generated from each tree in the forestRK model. Note that the test data points
in test.prediction.df.list are re-ordered by the increasing original obser-
vation index number.

pred.for.obs.forest.rk

a vector that stores the actual predicted class labels of the test observations in-
stead of their numericized (integer) class types. Note that the test data points
in pred.for.obs.forest.rk are re-ordered by the increasing original observa-
tion index number.

num.pred.for.obs.forest.rk

the numericized version of pred.for.obs.forest.rk. Note that the test data
points in num.pred.for.obs.forest.rk are re-ordered by the increasing orig-
inal observation index number.

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

See Also

pred.treeRK forestRK

Examples

example: iris dataset
load the forestRK package
library(forestRK)

numericize the data
x.train <- x.organizer(iris[,1:4], encoding = "num")[c(1:25,51:75,101:125),]
x.test <- x.organizer(iris[,1:4], encoding = "num")[c(26:50,76:100,126:150),]
y.train <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.new

y.factor.levels <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.factor.levels

make prediction from a random forest RK model
typically the nbags and samp.size has to be much larger than 30 and 50
pred.forest.rk <- pred.forestRK(x.test = x.test, x.training = x.train,

y.training = y.train,
y.factor.levels,
min.num.obs.end.node.tree = 6,
nbags = 30, samp.size = 50, entropy = FALSE)

pred.forest.rk$test.prediction.df.list[[10]]
pred.forest.rk$pred.for.obs.forest.rk # etc....

pred.treeRK 23

pred.treeRK Make predictions on the test observations based on a rktree model

Description

Makes predictions on the observations in the test dataset based on the rktree model constructed
from the training dataset.

Please be aware that, at the end of the pred.treeRK function, the test data points in prediction.df
are re-ordered by the increasing original index number (the original rownames) of those test obser-
vations. So if you shuffled the data before seperating them into a training and a test set, the order of
the data points in which they are presented under the data frame prediction.df may not be same
as the shuffled order in your original test set.

Users of this function may be interested in identifying the original name of the numericized pre-
dicted class type shown in the last column of data frame prediction.df. This can easily be done
by extracting the attribute y.factor.levels from the y.organizer object. For example, if the
data frame prediction.df indicates that the predicted class type of the 1st test observation is "2",
that means the actual name of the predicted class type for that 1st test observation is indicated as
the 2nd element of the vector y.organizer.object$y.factor.levels that we can obtain during
the data cleaning phase.

The pred.treeRK function makes a use of the list of hierarchical flags generated by the construct.treeRK
function; the function uses the list of hierarchical flag as a guide to how it should split the test set
to make predictions. The function pred.treeRK itself actually generates a list of hierarchical flag
of its own as it splits the test set, and at the end of the function pred.treeRK tries to match the list
of hierarchical flag it generated with the list of hierarchical flag from the construct.treeRK func-
tion. If the two flags match exactly, then it is a good sign since this would imply that the splitting on
the test set was done in the manner consistent with how the training set was split when the rkTree
in question was built. If there is any difference in the two flags, however, this is not a good sign
since it would signal that the splitting on the test set has done in a different manner than how the
splitting was done on the training set; if the mismatch occurs, the pred.treeRK function will stop
and throw an error. For more information about the hierarchical flags of a rkTree, please see the
construct.treeRK section of this documentation.

Usage

pred.treeRK(X = data.frame(), rktree = construct.treeRK())

Arguments

X a numericized data frame of covariates of the test observations or the observa-
tions that we want to make predictions for (obtained via x.organizer()). X
should contain no NA or NaN’s.

rktree a construct.treeRK object.

24 pred.treeRK

Value

A list containing the following items:

prediction.df a data frame of test observations. If prediction.df has n columns, the first n-1
columns will contain the numericized covariates of the test observations, and the
very last n-th column will contain the predicted numericized class type for each
of those test observations. Note that, at the end of the pred.treeRK function,
the test data points in prediction.df are re-ordered by theincreasing original
observation index number.

flag.pred the hierarchical flag of splits performed on the test set by applying the rktree
model in question.

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

See Also

pred.forestRK

Examples

example: iris dataset
load the forestRK package
library(forestRK)

numericize the data
x.train <- x.organizer(iris[,1:4], encoding = "num")[c(1:25,51:75,101:125),]
x.test <- x.organizer(iris[,1:4], encoding = "num")[c(26:50,76:100,126:150),]
y.train <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.new

Construct a tree
min.num.obs.end.node.tree is set to 5 by default;
entropy is set to TRUE by default
tree.entropy <- construct.treeRK(x.train, y.train)
tree.gini <- construct.treeRK(x.train, y.train,

min.num.obs.end.node.tree = 6, entropy = FALSE)

Make predictions on the test set based on the constructed rktree model
last column of prediction.df stores predicted class on the test observations
based on a given rktree
prediction.df <- pred.treeRK(X = x.test, tree.entropy)$prediction.df
flag.pred <- pred.treeRK(X = x.test, tree.entropy)$flag.pred

var.used.forestRK 25

var.used.forestRK Extract the list of covariates used to perform the splits to generate a
particular tree(s) in a forestRK object

Description

Spits out the list of covariates used to perform the splits to generate a particular tree(s) in a forestRK
object that the user provided.

The function extracts the list of names of covariates used in splits to construct a single or a multiple
numbers of trees from a forestRK object. The var.used.forestRK displays the actual name of
the covariate used for each split (not their numericized ones), consistent to the exact order of the
split; for instance, the 1st element of the vector covariate.used.for.split.tree[["6"]] from
the example below is the covariate on which the 1st split had occured while the 6th tree in the
forestRK.1 object was built.

Each vector in the list are named by the exact indices of the tree; for example, if the code obj <-
var.used.forestRK(forestRK.1, tree.index=c(4,5,6)) is used to extract the list of covari-
ates used for splitting to construct 4th, 5th, and 6th trees in the forest, and the user can retrieve the
information pertains explicitly to the 6th tree in the forest by doing obj[["6"]].

Usage

var.used.forestRK(forestRK.object = forestRK(), tree.index = c())

Arguments

forestRK.object

a forestRK object.

tree.index a vector storing the indices of the trees that we are interested to examine.

Value

A list of vectors that stores the names of covariates on which each split was performed to construct
the specific tree(s) in a forestRK model that the user provided.

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

See Also

forestRK

26 x.organizer

Examples

library(forestRK)

x.train <- x.organizer(iris[,1:4], encoding = "num")[c(1:25,51:75,101:125),]
y.train <- y.organizer(iris[c(1:25,51:75,101:125),5])$y.new

random forest
min.num.obs.end.node.tree is set to 5 by default;
entropy is set to TRUE by default
normally nbags and samp.size have to be much larger than 30 and 50
forestRK.1 <- forestRK(x.train, y.train, nbags = 30, samp.size = 50)

prediction from a random forest RK
covariate.used.for.split.tree <- var.used.forestRK(forestRK.1,

tree.index=c(4,5,6))

retrieve the list of covariates used for splitting for the 'tree #6'
covariate.used.for.split.tree[["6"]]

x.organizer Numericizing a data frame of covariates from the original dataset via
Binary or Numeric Encoding

Description

Takes the original data frame of covariates as an input (which may or may not be numeric), and
converts it into a numericized data frame by applying either Binary or Numeric Encoding.

Binary Encoding for categorical features are recommended for tree ensembles when the cardinality
of categorical feature is >= 1000; Numeric Encoding for categorical features are recommended for
tree ensembles when the cardinality of categorical features is < 1000.

For more information about the Binary and Numeric Encoding and their effectiveness under dif-
ferent cardinality, please visit: https://medium.com/data-design/ visiting-categorical-features-and-
encoding-in-decision-trees-53400fa65931

NOTE: In order to use other functions within the forestRK package, you must ensure that the
numericized data frame of covariates (the x.organizer object) contains no missing record, that is,
you have to remove any record containing NA or NaN prior to applying the x.organizer function.

Following is the summary of the data cleaning process with x.organizer():

1. remove all NA or NaN’s from the data in hand. 2. split the data into a data frame that contains
covariates of ALL data points, (BOTH training and test observations), and a vector that contains
class types of the training observations; 3. apply the x.organizer to the big data frame of covariates
of all observations. 4. split the x.organizer output into a training and a test set, as needed.

PROPER DATA CLEANING IS ABSOLUTELY NECESSARY FOR forestRK FUNCTIONS TO
WORK!

Usage

x.organizer(x.dat = data.frame(), encoding = c("num","bin"))

y.organizer 27

Arguments

x.dat a data frame storing covariates of each observation (can be either numeric or
non-numeric) from the original data; x.dat should contain no NA or NaN. The
rownames of x.dat should be numerical index for each observations.

encoding type of encoding done for the categorical features; "num" stands for Numeric
Encoding, and "bin" stands for Binary Encoding. When the data in question
only has numeric features, then the user can select either one of "num" or "bin",
and the x.organizer function will just return the original numeric dataset.

Value

A numericized data frame of the covariates from the original data obtained via either Numeric or
Binary Encoding.

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

See Also

y.organizer

Examples

example: iris dataset
library(forestRK) # load the package forestRK

Basic Procedures
1. Apply x.organizer to a data frame that stores covariates of
ALL observations (BOTH training and test observations)
2. Split the output from 1 into a training and a test set, as needed

note: iris[,1:4] are the columns of the iris dataset that stores
covariate values

covariates of training data set
x.train <- x.organizer(iris[,1:4], encoding = "num")[c(1:25,51:75,101:125),]

y.organizer Numericize the vector containing categorical class type(y) of the orig-
inal data

28 y.organizer

Description

Numericizes a vector of categorical class type of each (training) data point.

NOTE: In order to use other functions within the forestRK package, you must ensure that the
original vector of class type y contains no missing record (NA, NaN), that is, you have to remove
any record containing NA or NaN prior to applying the y.organizer function.

Following is the summary of the data cleaning process with y.organizer(): 1. remove all NA or
NaN’s from the dataset in hand. 2. split the training dataset into a data frame that contains covariates
of ALL observations (BOTH training and test observations), and a vector that contains class types
of the training observations; 3. apply the y.organizer to the vector that contains class type of each
training observation.

PROPER DATA CLEANING IS NECESSARY FOR THE forestRK FUNCTIONS TO WORK!

Usage

y.organizer(y = c())

Arguments

y a vector containing the class type of each observation from the dataset on which
we want to build our rktree models (the training dataset); y should contain no NA
or NaN.

Value

A list containing the following items:

y.new a vector containing numericized class type of each observation from the dataset
from which our rktree models are generated from. (these are typically the ob-
servations from the training set)

y.factor.levels

a vector storing original names of the numericized class types.

Author(s)

Hyunjin Cho, <h56cho@uwaterloo.ca> Rebecca Su, <y57su@uwaterloo.ca>

See Also

x.organizer

Examples

example: iris dataset
load the package forestRK
library(forestRK)

Basic Procedures:
1. Extract the portion of the data that stores class type of each
TRAINING observation, and make it as a vector

y.organizer 29

2. apply y.organizer function to the vector obtained from 1

y.train <- y.organizer(as.vector(iris[c(1:25,51:75,101:125),5]))
retrieves the original names of each class type, if the class names
were originally non-numeric
y.train$y.factor.levels
retrieves the numericized vector that stores classification category
y.train$y.new

Index

∗ Data Cleaning
x.organizer, 26
y.organizer, 27

∗ after.split
criteria.after.split.calculator, 6

∗ bootstrap
bstrap, 2

∗ calculator
criteria.after.split.calculator, 6
criteria.calculator, 7

∗ construct.tree
construct.treeRK, 3

∗ covariate.index
cutoff.node.and.covariate.index.finder,

9
∗ covariates

importance.forestRK, 16
importance.plot.forestRK, 17
var.used.forestRK, 25

∗ cutoff.node
cutoff.node.and.covariate.index.finder,

9
∗ end.nodes

ends.index.finder, 12
∗ entropy

criteria.calculator, 7
∗ forestRK

bstrap, 2
forestRK, 13
get.tree.forestRK, 15
importance.forestRK, 16
importance.plot.forestRK, 17
mds.plot.forestRK, 19
pred.forestRK, 20
var.used.forestRK, 25

∗ get.tree
get.tree.forestRK, 15

∗ gini.index
criteria.calculator, 7

∗ importance.plot
importance.plot.forestRK, 17

∗ importance
importance.forestRK, 16
importance.plot.forestRK, 17

∗ mds.plot
mds.plot.forestRK, 19

∗ organizer
x.organizer, 26
y.organizer, 27

∗ plot
draw.treeRK, 10
importance.plot.forestRK, 17
mds.plot.forestRK, 19

∗ prediction
pred.forestRK, 20
pred.treeRK, 23

∗ tree.plot
draw.treeRK, 10

∗ treeRK
construct.treeRK, 3
criteria.after.split.calculator, 6
criteria.calculator, 7
cutoff.node.and.covariate.index.finder,

9
draw.treeRK, 10
ends.index.finder, 12
pred.treeRK, 23

∗ var.used
var.used.forestRK, 25

∗ x
x.organizer, 26

∗ y
y.organizer, 27

bstrap, 2, 14

construct.treeRK, 3, 10, 12, 14
criteria.after.split.calculator, 6, 8
criteria.calculator, 6, 7

30

INDEX 31

cutoff.node.and.covariate.index.finder,
9

draw.treeRK, 10

ends.index.finder, 12

forestRK, 3, 13, 15, 17–19, 22, 25

get.tree.forestRK, 15

importance.forestRK, 16
importance.plot.forestRK, 11, 17

mds.plot.forestRK, 11, 19

pred.forestRK, 20, 24
pred.treeRK, 5, 22, 23

var.used.forestRK, 25

x.organizer, 26, 28

y.organizer, 27, 27

	bstrap
	construct.treeRK
	criteria.after.split.calculator
	criteria.calculator
	cutoff.node.and.covariate.index.finder
	draw.treeRK
	ends.index.finder
	forestRK
	get.tree.forestRK
	importance.forestRK
	importance.plot.forestRK
	mds.plot.forestRK
	pred.forestRK
	pred.treeRK
	var.used.forestRK
	x.organizer
	y.organizer
	Index

